RTS API Documentation  1.10.11
switch_estimators.c
Go to the documentation of this file.
1 /*
2  * FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
3  * Copyright (C) 2005-2015, Anthony Minessale II <anthm@freeswitch.org>
4  *
5  * Version: MPL 1.1
6  *
7  * The contents of this file are subject to the Mozilla Public License Version
8  * 1.1 (the "License"); you may not use this file except in compliance with
9  * the License. You may obtain a copy of the License at
10  * http://www.mozilla.org/MPL/
11  *
12  * Software distributed under the License is distributed on an "AS IS" basis,
13  * WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License
14  * for the specific language governing rights and limitations under the
15  * License.
16  *
17  * The Original Code is FreeSWITCH Modular Media Switching Software Library / Soft-Switch Application
18  *
19  * The Initial Developer of the Original Code is
20  * Anthony Minessale II <anthm@freeswitch.org>
21  * Portions created by the Initial Developer are Copyright (C)
22  * the Initial Developer. All Rights Reserved.
23  *
24  * Contributor(s):
25  *
26  * Dragos Oancea <droancea@yahoo.com>
27  *
28  * switch_estimators.c -- Estimators and Detectors (try to read into the future: packet loss, jitter, RTT, etc)
29  *
30  */
31 
32 #include <switch.h>
33 
34 #ifndef _MSC_VER
35 #include <switch_private.h>
36 #endif
37 #undef PACKAGE_NAME
38 #undef PACKAGE_STRING
39 #undef PACKAGE_TARNAME
40 #undef PACKAGE_VERSION
41 #undef PACKAGE_BUGREPORT
42 #undef VERSION
43 #undef PACKAGE
44 #undef inline
45 #include <switch_types.h>
46 
47 #define KALMAN_SYSTEM_MODELS 3 /*loss, jitter, rtt*/
48 #define EST_LOSS 0
49 #define EST_JITTER 1
50 #define EST_RTT 2
51 
52 /* This function initializes the Kalman System Model
53  *
54  * xk+1 = A*xk + wk
55  * zk = H*xk + vk
56  * xk = state variable (must exist in physical world - measurable )
57  * zk = measurment
58  * wk,vk - white noise
59  * A = state trasition matrix , (n x n ) matrix
60  * H = state-to-measurment matrix , ( n x n ) matrix
61  * Noise covariance:
62  * Q: Covariance matrix of wk, ( n x n ) diagonal matrix
63  * R: Covariance matrix of vk , ( m x m ) diagonal matrix
64  * R: if you want to be affected less by the measurement and get the estimate with less variation, increase R
65  * Q: if you want to be affected more by the measurement and get the estimate with more variation, decrease Q
66  *
67  * (Phil Kim book)
68  *
69  */
71 {
72  est -> val_estimate_last = 0 ;
73  est -> P_last = 0;
74  est -> Q = Q; /*accuracy of system model */ /* SYSTEM MODEL: TO BE DEDUCTED */
75  est -> R = R; /*accuracy of measurement*/ /* SYSTEM MODEL: TO BE DEDUCTED */
76  est -> K = 0;
77  est -> val_estimate = 0 ;
78  est -> val_measured = 0 ; // [0-100 %] or [0-5000] or [0-2sec]
79 }
80 
81 /*
82 CUSUM Kalman functions to detect sudden change over a predefined thereshold.
83 
84 y(t) = sampled RTT
85 x(t)= desired RTT
86 
87 Model:
88 x(t+1) = x(t) + delta(t)*v(t)
89 y(t) = x(t) + e(t)
90 
91 Noisy characteristic of RTT captured by measurment noise e(t) with variance Re.
92 The step changes in the desired RTT x(t) is modeled as the process noise v(t)
93 with variance Rv and the discrete variable delta(t) .
94 If a change occurs at time t, then delta(t) = 1 otherwise delta(t) = 0.
95 
96 avg(x(t)) = avg(x(t-1)) + K(t)(y(t) - avg(x(t-1)))
97 K(t) = P(t-1)/(P(t-1) + Re))
98 P(t) = (1-K(t))P(t-1) + delta(t-1)* Rv
99 e(t) = y(t) - avg(x(t))
100 g(t) = max(g(t-1) + e(t) - epsilon,0)
101 if g(t) > 0 then
102  delta(t) = 1 // alarm
103  g(t) = 0
104 else
105  delta(t) = 0
106 endif
107 
108 constants:
109 
110 epsilon = 0.005
111 h = 0.05
112 */
114 {
115  cusum_kalman_detector_t *detector_change = detect_change;
116 
117 
118  if (epsilon < 0 || h < 0) {
119  return FALSE;
120  }
121 
122  detector_change -> val_estimate_last = 0;
123  detector_change -> val_desired_last = 0;
124  detector_change -> P_last = 0;
125  detector_change -> K_last = 0;
126  detector_change -> delta = 0;
127  detector_change -> measurement_noise_e = 0;
128  detector_change -> variance_Re = 0;
129  detector_change -> measurement_noise_v = 0;
130  detector_change -> variance_Rv = 0;
131  detector_change -> g_last = 0;
132  /*per system model*/
133  detector_change -> epsilon = epsilon;
134  detector_change -> h = h;
135  /*variance*/
136  detector_change -> last_average = 0;
137  detector_change -> last_q = 0;
138  detector_change -> N = 0;
139  return TRUE;
140 }
141 
143 {
144  float K=0;
145  float P=0;
146  float g=0;
147  float desired_val;
148  float current_average;
149  float current_q;
150  float sample_variance_Re = 0;
151 
152  /*variance*/
153 
154  detector->N++;
155  current_average = detector->last_average + (measurement - detector->last_average)/detector->N ;
156  if (avg > current_average) {
157  current_average = avg;
158  }
159  current_q = detector-> last_q + (measurement - detector->last_average) * (measurement - current_average);
160  if (detector->N != 0)
161  sample_variance_Re = sqrt(current_q/detector->N);
162 
163  detector->variance_Re = sample_variance_Re;
164  detector->variance_Rv = sample_variance_Re;
165 
166  if (sample_variance_Re != 0) {
167  K = detector->P_last / (detector->P_last + detector->variance_Re);
168  desired_val = detector->val_desired_last + K * (measurement - detector->variance_Re);
169  P = (1 - K) * detector->P_last + detector->delta * detector->variance_Rv;
170  detector->measurement_noise_e = measurement - desired_val;
171  g = detector->g_last + detector->measurement_noise_e - detector->epsilon;
172  if (g > detector->h) {
173  detector->delta = 1;
174  g = 0;
175  } else {
176  detector->delta = 0;
177  }
178 
179  /* update last vals for calculating variance */
180  detector->last_average = current_average;
181  /* update lasts (cusum)*/
182  detector -> g_last = g;
183  detector -> P_last = P;
184  detector -> val_desired_last = desired_val;
185  }
186  if (detector->delta == 1) {
187  return TRUE;
188  }
189  return FALSE;
190 }
191 
192 /* Kalman filter abstract ( measure and estimate 1 single value per system model )
193  * Given the measurment and the system model together with the current state ,
194  * the function puts an estimate in the estimator struct */
195 SWITCH_DECLARE(switch_bool_t) switch_kalman_estimate(kalman_estimator_t * est, float measurement, int system_model)
196 {
197  /*system model can be about: loss, jitter, rtt*/
198  float val_estimate;
199  float val_temp_est = est->val_estimate_last;
200  float P_temp = est->P_last + est->Q;
201 
202  if (system_model >= KALMAN_SYSTEM_MODELS) {
203  return SWITCH_FALSE ;
204  }
205 
206  /*sanitize input a little bit, just in case */
207  if (system_model == EST_LOSS ) {
208  if ((measurement > 100) || (measurement < 0)) {
209  return SWITCH_FALSE ;
210  }
211  }
212 
213  if (system_model == EST_JITTER) {
214  if ((measurement > 10000) || (measurement < 0)) {
215  return SWITCH_FALSE;
216  }
217  }
218 
219  if (system_model == EST_RTT) {
220  if ((measurement > 2 ) || (measurement < 0)) {
221  return SWITCH_FALSE;
222  }
223  }
224 
225  /* calculate the Kalman gain */
226  est->K = P_temp * (1.0/(P_temp + est->R));
227  /* real life measurement */
228  est->val_measured = measurement ;
229  val_estimate = val_temp_est + est->K * (est->val_measured - val_temp_est);
230  est->P = (1 - est->K) * P_temp;
231  /*update lasts*/
232  est->P_last = est->P;
233  /* save the estimated value (future) */
234  est->val_estimate_last = val_estimate;
235  return SWITCH_TRUE;
236 }
237 
239 {
240  float thresh_packet_loss = 5; /* % */
241  float thresh_rtt = 0.8 ; /*seconds*/
242 
243  if ((est_loss->val_estimate_last > thresh_packet_loss) &&
244  (est_rtt->val_estimate_last > thresh_rtt )) {
245  return SWITCH_TRUE;
246  }
247 
248  return SWITCH_FALSE;
249 }
250 
251 /* For Emacs:
252  * Local Variables:
253  * mode:c
254  * indent-tabs-mode:t
255  * tab-width:4
256  * c-basic-offset:4
257  * End:
258  * For VIM:
259  * vim:set softtabstop=4 shiftwidth=4 tabstop=4 noet:
260  */
261 
switch_bool_t
Definition: switch_types.h:441
Data Types.
#define KALMAN_SYSTEM_MODELS
#define EST_LOSS
switch_bool_t switch_kalman_estimate(kalman_estimator_t *est, float measurement, int system_model)
if((uint32_t)(unpack->cur - unpack->buf) > unpack->buflen)
switch_bool_t switch_kalman_is_slow_link(kalman_estimator_t *est_loss, kalman_estimator_t *est_rtt)
void switch_kalman_init(kalman_estimator_t *est, float Q, float R)
#define EST_RTT
switch_bool_t switch_kalman_cusum_detect_change(cusum_kalman_detector_t *detector, float measurement, float avg)
#define FALSE
Main Library Header.
#define SWITCH_DECLARE(type)
#define TRUE
switch_bool_t switch_kalman_cusum_init(cusum_kalman_detector_t *detect_change, float epsilon, float h)
#define EST_JITTER